M1. (a)	The ore is not pure or contains impurities or the ore does not contain 100% of the metal compound								
. ,			allow to concentrate the metal or metal compound	1					
		rock	c / other compounds need to be removed / separated	1					
	(b)	(i)	(cast iron is) brittle allow not strong ignore weak						
		(ii)	the oxygen reacts with carbon allow carbon burns in oxygen or is oxidised	1					
			reducing the percentage of carbon in the mixture	1					
			or producing carbon dioxide	1					
	(c)	(i)	aluminium has a low density	1					
		(ii)	(because copper) is in the central / middle (block of the periodic table)	1					
			whereas aluminium is in Group 3 (of the periodic table)	1					
		(iii)	iron is more reactive (than copper) ignore cost	1					
			so copper is displaced / reduced	1 [10]					

M2. (a)	because	e atoms / ions / particles in alloy are different (sizes) do not allow reference to molecules ignore reference to compounds	1
		so layers distorted	
		(and layers / atoms / ions / particles) don't slide or slide less easily accept all marking points in a suitably labelled or annotated diagram	1
		if no other mark awarded accept an alloy is a mixture or contains different metals / elements for 1 mark	1
	(b)	giant structure or lattice or macromolecule max 3 marks if incorrect bonding	1
		strong bonds (between carbon / atoms)	1
		covalent (bonds)	1
		each carbon / atom forms 4 bonds accept tetrahedral if no other marks awarded, allow carbon (atoms) for 1 mark	1
	(c)	reference to incorrect bonding = max 3 reference to 'weak covalent bonds' = max 2 allow correctly drawn diagram for first two marking points eg. (tangled) lines with no cross-links	

chains or large molecules	
ignore layers	1
with intermolecular forces or forces between chains	
allow bonds for forces accept no cross-links	1
that are weak	
must relate to 2 ™ marking point	1
and are easily overcome/ broken (when heated)	
accept molecules / chains can flow / move	1

[11]

М3.	(a	1)	(i) many ethene / molecules / monomers accept double bonds open / break	1
			join to form a long hydrocarbon / chain / large molecule accept addition polymerisation	
			ignore references to ethane correct equation gains 2 marks	1
		(ii)	(can be deformed but) return to their original shape (when heated or cooled)	
			ignore 'it remembers its shape'	1
		(iii)	cross links / extra bonds in PEX accept inter-molecular bonds	
			ignore inter-molecular forces	1
			molecules / chains in PEX are held in position accept rigid structure	1
			molecules / chains in PEX unable to slide past each other / move it = PEX throughout	1
	(b)	201	four from:	
	(6)	•	less (hydrocarbon) fuels used allow less energy	
		•	less / no electrical energy used allow no electrolysis	
		•	reduce carbon / carbon dioxide emissions allow less global warming	
		•	reduce / no pollution by sulfur dioxide / acid rain	

- continuous process
 allow less / no transportation
- conserve copper which is running out or only low-grade ores available
- reduce the amount of solid waste rock that needs to be disposed allow less waste
- reduce the need to dig large holes (to extract copper ores)
 allow less mining
 ignore costs / sustainability / non-renewable

4

[10]